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Abstract—This paper presents an approximate mathematical technique utilizing the energyv-integral method
for solving the planar solidification problem of a pure liquid metal occupying the infinite half-space.
Assuming a time-dependent relaxation model for the energy flux results in a hyperbolic differential equation
for the thermal field which is solved under suitable conditions of both local thermodynamic equilibrium
and thermal dynamical compatibility on the interface displacement. In fact, analytical expressions are
derived when (a) surface temperature is prescribed; or (b) heat flux at the surface boundary is given.
Comparisons of these expressions with corresponding results pertinent to parabolic Stefan problems are
made ; and finally all the solutions are presented in graphical form.

1. INTRODUCTION

IN GENERAL, a valid description of a physical phenom-
enon usually leads to a non-linear problem. In the
field of heat transfer, and more particularly heat con-
duction, the transient heat conduction equation
becomes nonlinear if the temperature variations are
large or the thermal properties vary rapidly with tem-
perature. On the other hand, when heat transfer takes
place at high temperature levels the effects of thermal
radiation or a change of phase may occur, and, as a
consequence, the boundary conditions become non-
linear. Therefore, a transient heat conduction problem
becomes nonlinear due to the nonlinearity of either
the differential equation or the boundary conditions
or both. The difficuity in the analysis of non-linear
problems centers on the fact that no general analytic
theory is yet available for the solution of non-linear
partial differential equations ; each problem should be
tackled individually and the principle of superposition
not being applicable, the analytic solutions of non-
linear problems are often ad hoc and approximate.
An elegant mathematical technique by which approxi-
mate analytic solutions to non-linear transient heat
transfer problems can be obtained is the energy-
integral method. For the application of this method,
non-linear problems need not be linearized before-
hand.

A rather important class of transient non-linear
heat transfer problems are those involving a liquid-
solid phase change and which are usually known as
Stefan problems. These problems are characterized by
an undetermined moving boundary which separates
the distinct phases, and which must be determined as
part of the solution of the problem. In particular,
assuming a time-dependent relaxation model for the
energy flux instead of the classical Fourier law gives
rise to a hyperbolic differential equation for the
thermal field, and, as a consequence to a hyperbolic
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Stefan problem. In recent years, many investigators
have explored the effect of non-Fourier conduction
accompanied with a phase change in transient heat
transfer processes. Using similarity arguments, Saad
and Didlake [1] solved a one-dimensional melting
problem of a semi-infinite solid based on the non-
Fourier heat conduction theory. DeSocio and
Gualtieri [2]) have utilized potential theoretic argu-
ments to obtain an approximate solution for a one-
dimensional, two-phase Stefan problem. The authors
of ref. [3] have proposed an explicit solution for a one-
phase melting problem described along the infinite
half-line with a straight line as an interface front, other
than a characteristic. Under certain conditions on the
interface, Showalter and Walkington [4] have dem-
onstrated the well-posedness of a hyperbolic Stefan
problem in the weak sense.

Although the energy-integral method is applicable
to all heat transfer problems, it finds its greatest appli-
cability in Stefan problems or transient problems
which involves non-linear boundary conditions. In
fact, Goodman [5] has developed a method which
utilizes the energy-integral and applies it to parabolic
Stefan problems. The objective of this paper, however,
is to extend the application of Goodman’s method to
hyperbolic Stefan problems. It will be seen that the
equation for determining the location of the interface
boundary reduces to an ordinary differential equation
the solution of which can frequently be expressed in
closed analytical form.

2. A RELAXATION MODEL FOR THE
ENERGY FLUX

In classical heat transfer phenomena, the consti-
tutive equation governing the heat flow is given by the
empirical Fourier law, which relates the heat flow
flux with temperature gradient. In particular, the one-
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A, C constants

a(t), b(1), c(z) atbitrary time-dependent
coefficients, equation (44)

b initial solidification speed

C,  specific heat of solid at constant pressure

g(x, t) heat generation function

f(e), (1), r(1), v{1) see equation (30)

F(ry integral of f (1), equation (36)

&z, t) singular perturbation approximation of

e(n)

thermal conductivity

latent heat of fusion

constant, equation (47b)

constant, equation (27b)

g(x, 1) heat flux

Q(1), R(1) see equations (48) and (58),

respectively

solidification front position

dimensionless solidification front

position

§(t, 1) approximate solidification front position

zZgtx

s(1)
D)

Ste  Stefan number, equation (27b)
T(x, 1) temperature distribution

T, fusion temperature

t time

r dimensionless time

NOMENCLATURE

Ar time mesh
u(x. t) temperature difference

x spatial variable.

Subscript
0 surface value (at x = 0).

Greek symbols
2 thermal diffusivity
B volumetric latent heat of fusion
¥ speed of heat wave propagation
< dimensionliess time

n(t), v(r) given functions of time, equations
(52) and (56)
e energy integral

A polynomial coefficients, equations {25a)
and (50)
u(n), u*(2) specified functions of time,

equations (25b) and (59b)
I dummy variable
p density of solid
g polynomial coefficients, equation (59a)
T relaxation time
&(5), ¥{{), cp components of #(1, 1),
equation (32).

dimensional Fourier law for a homogeneous isotropic
material reads

q(x, 1) = — KT (x,1) n

where g is the heat flow flux and T the temperature
distribution within the body.

On the other hand, the energy-balance differential
equation for a homogeneous, isotropic material with
energy source within the body (or the First Law of
Thermodynamics) is

—g (. )+glx. 0 = pC,T(x,0) (2)

where p is the density of the material, C, the specific
heat at constant pressure, and g the volumetric energy
source which may be a function of time and/or
position. Here and throughout this paper, the thermal
characteristics are assumed to be constant.

Combining equations (1) and (2), gives the usual
heat conduction equation for a homogeneous iso-
tropic material with a heat source or sink within the
body as

KT, (x.)+g(x.ty = pC,T,(x,1). (3)

This partial differential equation is of the parabolic
type and thus has several serious shortcomings, the
most prominent one being that a thermal disturbance
at any point in a body is instantaneously felt at every
point throughout the body, that is, the speed of heat

propagation for Fourier heat conductors is infinite.
However, since thermal energy is carried by molecular
motion which propagates at a finite speed, one
generally concludes that Fourier’s law is a low order
approximation to a more exact constitutive relation.
This has prompted a considerable interest in a higher
order approximation for the heat flux model.

In fact, as attempts to circumvent the non-physical
phenomenon of an infinite speed of heat propagation,
a number of researchers have proposed as a substitute
for equation (1) a time-dependent relaxation model
for the heat flux law

1q,+q = —KT, 4

as a means of placing an upper bound on the propa-
gation speed of thermal disturbances. Here the con-
stant t > 0 is some thermal relaxation or start-up time
for the commencement of heat flow after applying a
temperature gradient. For many solids, 7 is of the
order of 10~1'*-10~'* s [6]. The use of equation (4)
appears to be particularly important in certain tran-
sient heat transfer applications with large variations
in temperature or large gradients of temperature.
Furthermore, with the advent of laser penetration and
welding, explosive bonding, fast flux nuclear reactors,
and electrical discharge machining, short time, high
heat flux melting situations are becoming more preva-
lent. For various studies on the conduction of heat
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based on equation (4), the reader is referred to refs.
[7-18}.

As pointed out in refs. [1, 19], the non-Fourier effect
is generally important only at very early time in tran-
sient heat transfer process and decays quickly so that
the classical Fourier equation becomes accurate a
short time after the initial transient. However, such
an effect can be important even at a long time after
the initial transient if the thermal disturbance is oscil-
latory with the period of oscillation of the same order
of magnitude as the thermal relaxation time [19].

Equation {4) when substituted into the energy equa-
tion (2) yields the relaxation model for the heat flow

KT  +[g+19]= pCp[TTct +T,). )]

Equation (5) is a dissipative wave heat conduction
equation with a finite speed of propagation,
y = /(K/pC,7). For infinite propagation speed (i.e.
y —+ oo or T — 0), equation (5) reduced to its classical
heat diffusion version (3). Furthermore, the use of
equation (5) removes the peculiarity of an infinite
temperature gradient at the boundary as time
approaches zero. Finally, note that the temperatures
predicted by equations (3) and (5) differ only in non-
steady state conditions, since the relaxation model
reduces to the Fourier model under steady-state con-
ditions, even when 7 # 0.

3. STATEMENT OF THE PROBLEM

Consider the planar solidification, using a certain
mechanism, of a pure liquid metal occupying the infi-
nite half-space 0 € x < c0. At time ¢ = 0, the surface
x =0 is cooled and subsequently maintained at a
given time-dependent temperature To(){(To() < Tp).
Immediately the liquid along x = 0 solidifies and sub-
sequently a solidification front moves progressively
through the liquid such that behind the front the
material is in its solid phase while ahead of the front
the metal is in its liquid phase at T

Tx,y=T;,, xzs8(t), t>0

(®)

The problem in the solid phase is then to find at
any later time ¢ > 0 a pair of functions (s(¢), T(x, 1))
satisfying the following conditions:

al .. =1T,+7,, O<x<s(t), t>0 (D

TO.H=TeD), 1>0 8)
TEO. D=1, t>0 1$)
q(s(@), )= —fs(1), t>0; sO@=0 (0)

where « = K/pC, is the heat diffusivity of the metal
and the positive constant § is pL, L being the latent
heat of fusion. Note that equations (9) and (i0)
express the conditions of local thermodynamic equi-
librium and of thermal dynamical compatibility at the
solidification front x = s(r), respectively,

Condition (10) is not suitable in its present form.
However, following ref. [3] it can be rewritten in terms
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of the temperature gradient. In fact, differentiating
equations (9) and (10) along the solidification front
and combining the results with equation (4), one
obtains

T (s(), Oy’ —$* (0]
= A[s(O+(1/0s(0),
where 4 = L/C, and y* = a/1.
Remark 1. The temperature boundary condition on

the surface x = 0 can be replaced by the flux boundary
condition

t>0 (11)

q(oa t) = qo(’), 1> O (12)

with prescribed g,(r) > 0.

For purposes of reference, the solidification prob-
lem (7)-(9), and (11) will be referred to as Problem 1.
When condition (8) is replaced by condition (12), the
solidification problem is termed as Problem II.

4. SOLUTION OF PROBLEM | USING THE
ENERGY-INTEGRAL METHOD

Define
u(x,t) = Tr— T(x, 1). (13)

Then Problem I reduces to the problem of finding a
pair of functions (s(7), u(x, 1)) such that

ou,, =1u,+u, 0<x<s(), t>0 (14)
u(0,0) = Ti—To{t) = ue(t), >0 (15)
u(s(H),)=0, t>0 (16)

u(s(), D[ () =71 = AEO+ (A1), 1> 0.
(17)

Integrating the governing differential equation (14)
with respect to x over 0 < x < 5(7) and employing (16)
and (17), one obtains

4> d O+ As(M] =
T [O@+45(1)) = —ou (0,1) (18a)

where

(0
o = J‘ u(x, 1) dx (18b)
0
is the total energy of the solidified liquid metal.
Equation (18a) is the energy-integral equation for
this solidification problem. To solve this equation,
a second-degree polynomial approximation for the
temperature is assumed in the form

u(x, t) = a(t){(x —s)— b(t) {(x — 5)* (19)

where s = 5(1). Two conditions are needed to deter-
mine the two unknown coefficients a(s) and 5(r).
Equation (15) provides one condition, and the second
condition is essentially (17); but expressed in a more
appropriate form as follows.

Differentiating (16) along the curve x = s(f) gives
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U (s(0), 1) = —u(s(1), s (1) (20)

so that
u(,r(s([)w t) == uxx(s(t)~ [)S(f)
From equation (20), it follows that

il du(s(0).)
d

(21

$(0) —u(s(), N3 (0).

(22)

Simplifying equation (22) and utilizing equation (21)

yields
Uy ($(0), 1) = uy (s(D), S () —u(s(1), N3 ().

(23)

Combining equations (14), (17), (20) and (23) ieads
to

Au, (s(1), 1) = [u(s(1), ).

Conditions (15) and (24) constitute a complete set of
independent relations for the determination of the
two unknown coefficients. The resulting temperature
profile in light of equation (13) becomes

24

Tx,)=T;,—A l:i (x—8)+ %(x—s)z] (25a)

where

JR N E") AT =To()
TR _ A= To)

= u(r) ]
(25b)

Substituting the temperature (25) into the energy-
integral equation (18) and performing the indicated
operations result in the following non-linear ordinary
differential equation for the determination of the
location of the solid-liquid interface s(z) :

d? d
(1F+E>[s(5+u+\/(l+u))]

6
= +u—y 4] Q62)

with

5(0)=0, §0)=5b. (26b)

In the event that T,(¢) is independent of time 7, equa-
tion (26a) becomes

d’s ds
S(Ia*[‘z + a;) =N (27a)
where the constant N is defined by
- 2
_ 1+28te—./(1+2Ste) 27b)

o
5+2Ste+./(1+2Ste)

and Ste = (T;—T,)/A is the Stefan number. If, in
addition, t is allowed to approach zero, then the
initial-value problem (27) and (26b) reduces to

F. A. MoHAMED

ds_ N: s0)=0 28
s =N sO=0 (28)

The solution of equation (28) is
s(1) = /(2N (29)

which is the same Goodman's expression for the
location of the solidification front 5 = s(1) (see. e.g. p.
337 of ref. [5)).

Now, in the interest of obtaining an analytical
expression for the hyperbolic solidification front
location, one may introduce

() = s(Oh(), (1) =rh(Q) (30a)
h(t) = 5+p(0)+ (1 + u(0),
r(#) = 6a[l +u(t) — (1 + 1)) (30b)
then equations (26) read
o(1) [1% + ?] =f(0); v0)=0.
t’(0) = bh(0). (31)

Based on what was mentioned in Section 2, one may
assume that 0 < t « 1. Then according to a standard
procedure in singular perturbation theory a formal
uniform approximation, #(¢ ;7). for the solution v(z)
of the initial-value problem (31) can be constructed
by writing

i) =5 0h0) =o(+Y(O—cp  (32)

where { = t/t and ¢(¢) and () are functions of
their arguments which have to be determined. Here cp
denotes the common part.

Firstly, the function y({) can be obtained by solving
the problem

d%y  dy A _ o
d—cz“+a*¢7—0, Y(0)=0. y'(0)=bth(0).
(33)
Then one has
Y (Q) = bth(0) (1 —e ). (34)

On the other hand, ¢(r) satisfies the differential
equation

d
i =f()

de (35)

so that

(1) = JQF()+0); F(t)=L/'(h)dh (36)

where the arbitrary constant C is determined from the
matching requirement ¢(0) = (o) yielding C =
b*12h*(0). Hence

B(1) = J(2F (1) +b312h2(0)).

The common part, ¢p, consists of those terms which
cancel out in the matching. In the present case

(37



The energy-integral method : application to one-phase hyperbolic Stefan problems

ep = bh(0). (38)

Substituting equations (34), (37) and (38) in equa-
tion (32) gives

Ht, Dh(n) =  QF()+b*T°h*(0)) ~ bth(0) e~ ",
(3%

Equations (25) and (39) form a complete approxi-
mate analytic solution of Problem I.

When T, (1) is independent of time, so are g(1} and
h(?). In this case, equation (39) reduces to

§(6,7) = JQNt+ b)) —bre™" (40)

where N is given by equation (27b). Note that the
approximate expression (40) agrees with the exact one
(29) when t approaches zero.

For purposes of comparison, one may confine
attention to the case of a constant surface temperature
and define a proper set of dimensionless variables as
follows :

s 45 (ds/dn)

r
v’ S”\/(Nf)’ dt b
where b is taken as a reference speed, of the order of
magnitude of the speed of the solidification front, the
dimensionless equation of which is % = §(i).

Then the system of equations (27a) and (26b) and
expression (29) become dimensionless as
_(625 ds d30)

B a—?-{-a—?)zl, §(0) =0, T 42)

;=

@n

5(0) = J@b). 43)

It is of interest to consider the difference, D(f),
between the hyperbolic and parabolic solidification
depths for a fixed surface temperature. For concise-
ness, one may write D(7) = hyperbolic §(f)—para-
bolic 5(7). Figure 1 shows such a difference vs the
dimensionless time f. The behavior of the difference is

=
o 02
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congistent with the predittions of the previous works
(see, e.g. refs. [1-4, 7, 19]). In fact, the hyperbolic
solidification depth clearly differs significantly from
the diffusive one for early values of 7 and decreases
eventually to zero with increasing values of /1, ie.
with decreasing t for a fixed value of the real time
variable 1.

Remark 2. Assuming that the surface temperature
is slow varying with time and the solution of Problem
I is approximated by a cubic polynomial

u(x, D) = a(®) (x = )+b(D(x — > +c(N(x—5)°. (44)

The determination of the coefficients a, b and ¢ require
three constraints on the temperature distribution
u(x, 1). These constraints are (15), (24) and

u(0,6) =0, 45)

which is obtained by differentiating (15) and using the
governing differential equation (14).
Then the approximate temperature profile becomes

>0

Tx,H=T,—4 [A(x—-s)-f— %(x—s)z + éiv(x-—s){]
(46a)

3-J(9+6p)

vy
A==
5 N

(46b)

The energy-integral equation (18a) reduces to

dis  ds
S<T-LF + a;) =M (47a)
where M is given by
-4 3+6Ste—./(9+12Ste) (a7b)

134 68te—/(9+ 128te)

and Ste is once again the Stefan number defined
above. Equation (47a) has the same form as equation

0 1 2 3 4 % 6 7 8 9

1011 12 13 14 15 16 17 18 19 20

Dimensionless time, {=¢/r
FiG. 1. Difference of solidification depths vs time in dimensionless form for a fixed surface temperature.
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(27a) and hence the singular perturbation solution of
equation (47a) subject to equation (26b) maintains
the same form as equation (40) with N replaced by M
given above.

5. SOLUTION OF PROBLEM It USING THE
ENERGY-INTEGRAL METHOD

As mentioned above, Problem II is concerned with
the solidification of a pure liquid metal by withdrawal
of heat at the surface boundary x = 0. All the liquid
is once again at the solidification (or melting) tem-
perature. Strictly speaking, Problem II is identical
with Problem I except that the surface boundary con-
dition (8) is now replaced by condition (12). In
mathematical terms, the surface boundary condition
at x = 0 may be expressed as

qo()

1> 0.

KT.(0,) =+ +40(0) = Q(1),

Then Problem II written in the u-variable consists of
equations (14), (16), (17) and
_Kux (0’ [) = Q(t)s

In the present case, the energy-integral equation
(18a) implies that

t>0. (48)

s(1) 4
f u(x, ) dx+ As(?) =%J [1—e”797]1Q() d¢
49

where (26b) has been used.
Now, to solve equation (49) for s(¢), a second-
degree polynomial for u(x,¢) is sought in the form
of equation (19) where a(r) and b(¢) are determined
according to the two conditions (24) and (48). The
resulting temperature profile has the form of equation
(25a) where / is given by
;.=1 \/(1+4/.l)~ (1) =

2s

Q(t)S(!) .

(50)

Combining such an expression for temperature and
equation (49) yields

=%[5+#+V/(l+4y)] (51a)

where

aQ(t) J [1—e~“=97]0(¢) dE. (51b)

The graphical representation of equation (51a) is
given in Fig. 2. Note that the resulting curve and the
curve for T — 0 have the same features.

It is evident that the right-hand side of equation
(51a) is a monotonically increasing function of p, so
that for any given #, there is at most one u which
can satisfy (51a). Hence in principle it is possible to
uniquely invert equation (51a). With this in mind, one
may express # in terms of powers of y, in the form

F. A. MOHAMED

n=p+al =yl -+ - (52)

Then it is easily verified that this series is inverted into

N

. , Si 795
BT g g

(53)

The temperature-time history on the surface bound-
ary x = 0 is given parametrically by equation (51a)
and

T;— 70,0

y, (34)

=3[ 1420+ (1 +4p).
These two equations can be cross-plotted to determine
(T~ T(0, 1))/A in terms of n, and the result is shown
in Fig. 3, which is the same curve obtained by
Goodman [5] for the corresponding diffusive Stefan
problem, that is, when 7 — 0.

From equations (50) and (53), it follows that

AK 1, 5, 5l
O=oml" 7" tu
795

+'§rn -+ :’ (55)

where 5 = n(?) is given by equation (Sib). If 7 1s
allowed to approach zero, then equation (54) reduces
to

AK I, 5 B 51,
s(t)—q—o(t)[v i\ +§ —7‘;\
795

+‘§'“\ ——r (56d)

with v = v(¢) defined by

v = 220 J 0() de.

Equations (25a), (50) and (55) constitute a complete
approximate solution of Problem II. If equation (55)
is replaced by equation (56), one obtains the solution
of the corresponding diffusive problem with

(56b)

_qo(t)s(f)
T AK

(57)

Remark 3. In approximating the solution of Prob-
lem II by a cubic polynomial of the form of equation
(44), three conditions are required to determine the
coefficients of the polynomial. These conditions are
(24), (48) and an additional equation. The extra equa-
tion can be obtained by differentiating equation (48)
with respect to time and using the governing differ-
ential equation to deduce the constraint

“(H+0(t
u.v.\’x(o’ t) = - gv—()Tx-—Qv“('v) = R(’) (58)
In the event that Q(z) is so slow varying with time

that R(?) vanishes, constraint (58) obviously reduces
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30

N
o]

Thickness of solid, u(¢)=Q(t)s{eVK
o

415

600

Time, n(¢)

FiG. 2. Thickness of solid vs time for an arbitrary heat flux at the surface boundary : equation (51).

50

[r, =70, )4

100

300

Time, n(¢)

F1G. 3. Temperature—time history on the surface boundary for an arbitrary heat flux at that boundary:
equations (54) and (51).

the cubic polynomial (44) to a quadratic expression.
Otherwise, combining (24), (44), (48) and (58) results
in

2
Tx,)=T—A [a(x—s)+ % (x—s)?

R 3
+—6A (x—s) ] (59a)
where

1_ 1 4 * RSZ
az_\_/%;_”_); u*=i‘(%+7)~ (59b)

Inserting equations (59) into equation (49) yields
the same form of (51a) except that x and n are now
replaced by u* and

1/Q RS
* __ | = -
" —A2<K+ 2)

R 4 4
x (2—§+ % J [1—-e~="1Q() d«:). (60)

Therefore, the analysis after equation (51b) applies in
the present case. However, it will not be duplicated
here.
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METHODE INTEGRALE D'ENERGIE: APPLICATION AUX PROBLEMES
HYPERBOLIQUES DE STEFAN MONOPHASIQUES

Résumé—On présente une technique mathématique approchée qui utilise la méthode intégrale d'énergic
pour résoudre le probiéme de solidification plane d'un métal liquide pur occupant un demi-espace infini.
En supposant un modéle de relaxation variable dans le temps. pour le flux d'énergie, le chamip thermique
est deécrit par une équation hyperbolique aux dérivées partielles qui est résolue pour des conditions
d"équilibre thermodynamique local et de compatibilité thermique dynamique sur le déplacement de I'in-
terface. De fait des expressions analytiques sont obtenues lorsque: (a) la température de la surface est
donnée, ou (b) le flux thermique pariétal est donné. On fait des comparaisons entre ces expressions et
celles qui résuitent des problémes paraboliques de Stefan: enfin, les solutions sont présentées sous forme

graphique.

DIE ENERGIE-INTEGRAL-METHODE : ANWENDUNG AUF EINPHASIGE
HYPERBOLISCHE STEFAN-PROBLEME

Zusammenfassung—Es wird ein mathematisches Naherungsverfahren vorgestellt, das die Energie-Integral-
Methode benutzt. um das ebene Problem der Erstarrung eines fliissigen Metalls zu 16sen, welches einen
halbunendlichen Raum einnimmt. Die Verwendung eines ortlich-zeitlichen Relaxationsmodells fiir den
Energiestrom fithrt zu einer hyperbolischen Differentialgleichung fir das Temperaturfeld. welche bei
geeigneten Bedingungen sowohl fiir lokales thermodynamisches Gleichgewicht als auch fir thermisch-
dynamische Vetrdglichkeit an den sich verschiebenden Grenzflichen gelost wird. Es werden analytische
Ausdriicke hergeleitet, wenn (a) die Oberflichentemperatur oder (b) die Wirmestromdichte an der Ober-
fliche vorgegeben ist. Diese Ausdriicke werden mit entsprechenden Ergebnissen fiir parabolische Stefan-
Probleme verglichen. AbschlieBend werden alle Ergebnisse grafisch dargestellt.

METO/Jl MUHTEI'PAJIA SHEPTHH: NMPUMEHEHUE K OJHO®A3HbLIM
I'MNEPBOJIMYECKHUM 3AJIAYAM CTEPAHA

Annorauns-—IIpeacTapijicH MaTeMaTHYeCKHii crioco6 npubGAHKEHHOro pellieHHs NUIOCKOH 3a1a4y 3aTBep-
ZEBAHHS YHCTOTO XHAKOTO METAJIA, 3aNOJIHAIOLIErO NOJYNPOCTPAHCTBO, OCHOBAHHBIH HAa HCHOIBL30Ba-
HHHM METONa MHTErpasa JHepruu. B pesysbTaTte NPHMEHEHHA MOJEIH HECTAIIHOHAPHON penaxcaluy 1s
OTOKA 3JHEPrHHM TOJNy4YeHO runepbonuveckoe aupdepeHiHaNbHOE ypaBHEHNE IUIS TEMHAEPATYPHOIro
NoJjs, KOTOPOEe PEMIAETCHA B YCJIOBUAX, COOTBETCTBYIOIIMX KAK JIOKAJIIBHOMY TEPMOIHHAMHYECKOMY paB-
HOBECHIO, TaK M TEMIOBOH AHHAMHYECKON COBMECTHOCTH MpH CMeilteHHH MexdasHoit rpannnsl. [Moy-
4eHbl AHAJIUTHYECKHE BLIPAXKECHHS B CJIyYasX 3aJaHHs (2) TEMNepaTyphl MOBEPXHOCTH Uan (6) Tennosoro
NOTOKa y rpaHHYHOMN noBepxHocTH. [TpoBeneHb! CpaBHEHHS JAHHBIX BBIPAXEHHH C COOTBETCTBYIOLUNMH
pe3ynbTaTaMM, NOJyvYeHHbIMH Ana napabonuyeckoii 3aaayn CredaHa, a 3aTeM BCE PELICHUS NPEACTaB-
neHb! B rpaduveckol popme.



