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Abstract-This paper presents an approximate mathematical technique utilizing the energy-integral method 

for solving the planar solidification problem of a pure liquid metal occupying the infinite half-space. 
Assuming a time-dependent relaxation model for the energy flux results in a hyperbolic differential equation 
for the thermal field which is solved under suitable conditions of both local thermodynamic equilibrium 
and thermal dynamical compatibility on the interface displacement. In fact. analytical expressions are 
derived when (a) surface temperature is prescribed; or (b) heat flux at the surface boundary is given. 
Comparisons of these expressions with corresponding results pertinent to parabolic Stefan problems are 

made ; and finally all the solutions are presented in graphical form. 

1. INTRODUCTION 

IN GENERAL, a valid description of a physical phenom- 
enon usually leads to a non-linear problem. In the 
field of heat transfer, and more particularly heat con- 
duction, the transient heat conduction equation 
becomes nonlinear if the temperature variations are 
large or the thermal properties vary rapidly with tem- 
perature. On the other hand, when heat transfer takes 
place at high temperature levels the effects of thermal 
radiation or a change of phase may occur, and, as a 
consequence, the boundary conditions become non- 
linear. Therefore, a transient heat conduction problem 
becomes nonlinear due to the nonlinearity of either 
the differential equation or the boundary conditions 
or both. The difficulty in the analysis of non-linear 
problems centers on the fact that no general analytic 
theory is yet available for the solution of non-linear 
partial differential equations ; each problem should be 
tackled individually and the principle of superposition 
not being applicable, the analytic solutions of non- 
linear problems are often ud 110~ and approximate. 
An elegant mathematical technique by which approxi- 
mate analytic solutions to non-linear transient heat 
transfer problems can be obtained is the energy- 
integral method. For the application of this method, 
non-linear problems need not be linearized before- 
hand. 

A rather important class of transient non-linear 
heat transfer problems are those involving a liquid- 
solid phase change and which are usually known as 
Stefan problems. These problems are characterized by 
an undetermined moving boundary which separates 
the distinct phases, and which must be determined as 
part of the solution of the problem. In particular, 
assuming a time-dependent relaxation model for the 
energy flux instead of the classical Fourier law gives 
rise to a hyperbolic differential equation for the 
thermal field, and, as a consequence to a hyperbolic 

Stefan problem. In recent years, many investigators 
have explored the effect of non-Fourier conduction 
accompanied with a phase change in transient heat 
transfer processes. Using similarity arguments, Saad 
and Didlake [l] solved a one-dimensional melting 
problem of a semi-infinite solid based on the non- 
Fourier heat conduction theory. DeSocio and 
Gualtieri [2] have utilized potential theoretic argu- 
ments to obtain an approximate solution for a one- 
dimensional, two-phase Stefan problem. The authors 
of ref. [3] have proposed an explicit solution for a one- 
phase melting problem described along the infinite 
half-line with a straight line as an interface front, other 
than a characteristic. Under certain conditions on the 
interface, Showalter and Walkington [4] have dem- 
onstrated the well-posedness of a hyperbolic Stefan 
problem in the weak sense. 

Although the energy-integral method is applicable 
to all heat transfer problems, it finds its greatest appli- 
cability in Stefan problems or transient problems 
which involves non-linear boundary conditions. In 
fact, Goodman [5] has developed a method which 
utilizes the energy-integral and applies it to parabolic 
Stefan problems. The objective of this paper, however, 
is to extend the application of Goodman’s method to 
hyperbolic Stefan problems. It will be seen that the 
equation for determining the location of the interface 
boundary reduces to an ordinary differential equation 
the solution of which can frequently be expressed in 
closed analytical form. 

2. A RELAXATION MODEL FOR THE 

ENERGY FLUX 

In classical heat transfer phenomena, the consti- 
tutive equation governing the heat flow is given by the 
empirical Fourier law, which relates the heat flow 
flux with temperature gradient. In particular, the one- 
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A, C constants At time mesh 
a(t), b(l), c(t) arbitrary time-dependent U(S. t) temperature difference 

coefficients, equation (44) s spatial variable. 
b initial solidification speed 

C,, specific heat of solid at constant pressure 
g(x, 1) heat generation function Subscript 

f‘(E), h(t), I. c(t) see equation (30) 
0 surface value (at s = 0). 

F(t) integral off(r), equation (36) Greek symbols 
F(t. T) singular perturbation approximation of thermal diffusivity 

C(f) ; volumetric latent heat of fusion 
K thermal conductivity “J speed of heat wave propagation 
L fatent heat of fusion I 

i dimensionless time 
A4 constant, equation (47b) q(t), v(t) given functions of time, equations 
N constant, equation (27b) (52) and (56) 
y(.r, I) heat flux 0 energy integral 
Q(t), R(t) see equations (48) and (58). A polynomial coefficients, equations (Ba) 

respectively and (50) 
s(t) solidification front position p(t)% F*(I) specified functions of time, 
.?(i) dimensionless solidification front equations (25b) and (59b) 

position < dummy variable 
f(~(t, T) approximate solidification front position P density of solid 
Ste Stefan number. equation (27b) I7 polynomial coefficients, equation (59a) 
T(x, I) temperature distribution relaxation time 

7-f fusion temperature i(f), J/(i), cp components of aft, I), 
I time equation (32). 
r dimensionless time 

dimensional Fourier law for a homogeneous isotropic 
material reads 

q(x, t) = - KT,(x. t) (1) 

where 4 is the heat flow flux and T the temperature 
distribution within the body. 

On the other hand, the energy-balance differentia1 
equation for a homogeneous, isotropic material with 
energy source within the body (or the First Law of 
Thermodynamics) is 

-q.,fx t)+gfx, t) = pC,T,(s, t) (2) 

where p is the density of the material, C, the specific 
heat at constant pressure, and 9 the volumetric energy 
source which may be a function of time and/or 
position. Here and throughout this paper, the thermal 
characteristics are assumed to be constant. 

Combining equations (1) and (2) gives the usual 
heat conduction equation for a homogeneous iso- 
tropic material with a heat source or sink within the 
body as 

KT,,(.u, t)+g(r. t) = pC,T,(x, t). (3) 

This partial differential equation is of the parabolic 
type and thus has several serious shortcomings, the 
most prominent one being that a thermal disturbance 
at any point in a body is instantaneously felt at every 
point throughout the body. that is, the speed of heat 

propagation for Fourier heat conductors is infinite. 
However, since thermal energy is carried by molecular 
motion which propagates at a finite speed, one 
generally concludes that Fourier’s law is a low order 
approximation to a more exact constitutive relation. 
This has prompted a considerable interest in a higher 
order approximation for the heat flux model. 

In fact. as attempts to circumvent the non-physical 
phenomenon of an infinite speed of heat propagation, 
a number of researchers have proposed as a substitute 
for equation (1) a time-dependent relaxation model 
for the heat flux law 

rq,fq = -KT, (4) 

as a means of placing an upper bound on the propa- 
gation speed of thermal disturbances. Here the con- 
stant 5 > 0 is some thermal relaxation or start-up time 
for the commencement of heat flow after applying a 
temperature gradient. For many solids, T is of the 
order of lo- “-IO- Id s [6]. The use of equation (4) 
appears to be particularly important in certain tran- 
sient heat transfer applications with large variations 
in temperature or large gradients of temperature. 
Furthermore, with the advent of laser penetration and 
welding, explosive bonding, fast flux nuclear reactors, 
and electrical discharge machining, short time, high 
heat flux melting situations are becoming more preva- 
lent. For various studies on the conduction of heat 
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based on equation (4), the reader is referred to refs. 
[7-IS]. 

AS pointed out in refs. [ 1,191, the non-Fourier effect 
is generally important only at very early time in tran- 
sient beat transfer process and decays quickly SO that 
the classical Fourier equation becomes accurate a 
short time after the initial transient. However, such 
an effect can be important even at a long time after 
the initial transient if the thermal disturbance is oscil- 
latory with the period of oscillation of the same order 
of magnitude as the thermal relaxation time [ 191. 

E+tation (4) when substituted into the energy equa- 
tion (2) yields the relaxation model for the heat flow 

KTx,+ k-+ 79,1 = PC,[~T,, f Ttl. (5) 

Equation (5) is a dissipative wave heat conduction 
equation with a finite speed of propagation, 
y = J(K/pC,r). For infinite propagation speed (i.e. 
y -+ a3 or 5 --* 0), equation (5) reduced to its classical 
heat diffusion version (3). Furthermore, the use of 
equation (5) removes the peculiarity of an infinite 
temperature gradient at the boundary as time 
approaches zero. Finally, note that the temperatures 
predicted by equations (3) and (5) differ only in non- 
steady state conditions, since the relaxation model 
reduces to the Fourier model under steady-state con- 
ditions, even when 7 $0. 

3. STATEMENT OF THE PROBLEM 

Consider the planar solidification, using a certain 
mechanism, of a pure liquid metal occupying the in& 
nite half-space 0 $ x -z a. At time t ii: 0, the surface 
x = 0 is cooled and subsequently maintained at a 
given time-dependent temperature ?“,,(z)(T,(r) c Tc). 
Immediately the Iiquid along x = 0 solidifies and sub- 
sequently a solidification front moves progressively 
through the liquid such that behind the front the 
material is in its solid phase while ahead of the front 
the metal is in its liquid phase at Tf 

T&t) = T,, x 2 s(t), t > 0. (6) 

The problem in the solid phase is then to find at 
any later time f > 0 a pair of functions (s(f), T(x, r)) 
satisfying the following conditions : 

UT,, = rT,,+ T,. 0 <x < s(t), t > 0 (7) 

T(0, t) = T&t), t > 0 (8) 

T@(t), t) = T,, t > 0 (9) 

q(s(t),t) = -/o(t), t > 0; s(0) = 0 (10) 

where c( = K/PC,, is the heat diffusivity of the metal 
and the positive constant fi is pL, L being the latent 
heat of fusion. Note that equations (9) and (10) 
express the conditions of local thermodynamic eq& 
librium and of thermal dynamical compatibility at the 
solidification front x = s(t), respectively, 

Condition (10) is not suitable in its present form. 
However, following ref. [3] it can be rewritten in terms 

of the temperature gradient. in fact, differentiating 
equations (9) and (10) along the solidification front 
and combining the results with equation (4), one 
obtains 

= A[i(t)+(l/s)j(t)], t > 0 (11) 

where A = L/C,, and y2 = a}~. 
Remark 1. The temperature boundary condition on 

the surface x = 0 can be replaced by the flux boundary 
condition 

4(0, t) = qo0X t > 0 (12) 

with prescribed qO(t) > 0. 
For purposes of reference, the solidification prob- 

lem (7)-(9), and (1 I) will be referred to as Problem I. 
When condition (8) is replaced by condition (12), the 
solidification problem is termed as Problem II. 

4. SOLUTION OF PROBLEM I USING THE 
ENERGY-INTEGRAL METHOD 

Define 

U(X, t) = Tr- T(x, t). (13) 

Then Problem I reduces to the problem of finding a 
pair of functions (s(t), u(x, t)) such that 

%rx = zu,,+u,, 0 <x < s(t), t > 0 (14) 

~(0, t) = Tr- To(t) = IQ,(~), t > 0 (15) 

u(s(t), r) = 0, t > 0 (16) 

u&(t), t)[iz(t)-y2] = A[S(t)+ (l,‘z)S(t)], t > 0. 

(17) 

Integrating the governing differential equation (14) 
with respect to x over 0 < x < s(t) and employing (16) 
and (17), one obtains 

where 
S(l) 

G(t) = 
I 

u(x, t) dx (18b) 
0 

is the total energy of the solidified liquid metal. 
Equation (18a) is the e~rg~~teg~al entire for 

this solidification problem. To solve this equation, 
a second-degree polynomial approximation for the 
temperature is assumed in the form 

u(x.0 = a(t)(x--S)-b(t)(x-s)* (1% 

where s L s(l). Two conditions are needed to deter- 
mine the two unknown coeRicients a(t) and 6(t), 
Equation (15) provides one condition, and the second 
condition is essentially (I 7) ; but expressed in a more 
appropriate form as follows. 

Differentiating (16) along the curve x = s(r) gives 
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so that 

u,,(s(t), t) = - u,,(s(t). f)S(f). 

From equation (20) it follows that 

(21) 

Ws(t)> 6 du.As(O, 0 
dt = - dt 

i(t)-u,(s(t), r).i(t). 

(22) 

Simplifying equation (22) and utilizing equation (21) 
yields 

% (S(f), 1) = a,, (s(t), 0S2(f) - u.&(t), W(r). 

(23) 

Combining equations (14), (17), (20) and (23) leads 
to 

Au, (s(t), 0 = 1u.y (s(t), 012. (24) 

Conditions (IS) and (24) constitute a complete set of 
independent relations for the determination of the 
two unknown coefficients. The resulting temperature 
profile in light of equation (13) becomes 

T&t) = T,-A tl(x---s)+ ;(x-s)~ 1 GW 
where 

A= l-Ju+P) VT,- To(t)) 
s ’ 

/is/i(t)= A 

Wb) 

Substituting the temperature (25) into the energy- 
integral equation (18) and performing the indicated 
operations result in the following non-linear ordinary 
differential equation for the determination of the 
location of the solid-liquid interface s(t) : 

= 6,‘[1 +p-J(1 +p)l (264 

with 

s(0) = 0, S(0) = b. (26b) 

In the event that To(f) is independent of time t, equa- 
tion (26a) becomes 

,($+g)=N 
where the constant N is defined by 

N = 6c( 1+2Ste-J(l+2Ste) 

5 + 2Ste + J( If 2Ste) 
(27b) 

and Ste = (T,-- T,)/A is the Stefan number. If, in 
addition, T is allowed to approach zero, then the 
initial-value problem (27) and (26b) reduces to 

s; = N: s(O) = 0. 

The solution of equation (28) is 

s(r) = \!(2Nr) (29) 

which is the same Goodman’s expression for the 
location of the solidification front s = s(r) (see, e.g. p. 
337 of ref. [5]). 

Now, in the interest of obtaining an analytical 
expression for the hyperbolic solidification front 
location. one may introduce 

r(t) = s(r)h(t). f‘(r) = r(t)/z(r) (30a) 

h(t) = s+P(t)+J(l +P(t)), 

r(t) = 6a]l +~(t) - \’ (1 + 14t))l (Job) 

then equations (26) read 

1 =f(t); r(0) = 0. 

r’(0) = h/?(O). (31) 

Based on what was mentioned in Section 2, one may 
assume that 0 < 7 cc 1. Then according to a standard 
procedure in singular perturbation theory a formal 
uniform approximation, E(r ; 5). for the solution II(~) 
of the initial-value problem (31) can be constructed 
by writing 

C(t;z) = s(t;t)h(t) = +(r)+$((i)-cp (32) 

where [ = t/s and 4(t) and r/j([) are functions of 
their arguments which have to be determined. Here cp 
denotes the common part. 

Firstly, the function I++([) can be obtained by solving 
the problem 

d’$ drj 
@- + -@ = 0; II/(O) = 0. @‘(O) = bTh(0). 

(33) 

Then one has 

G(i) = brh(O)(l-e--). (34) 

On the other hand, 9(t) satisfies the differential 
equation 

4;; =./to (35) 

so that 

4(t) = J(2W + c) : F(t) = 
s 

‘f(b) df, (36) 
0 

where the arbitrary constant C is determined from the 
matching requirement Cp(0) = $(cu) yielding C = 
b2r2h2(0). Hence 

f#I(t) = J(2F(f)S-W/12(0)). (37) 

The common part, cp, consists of those terms which 
cancel out in the matching. In the present case 
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cp = bh(0). (3g) 

Substituting equations (34), (37) and (38) in equa- 
tion (32) gives 

~(~,7)~(~) = ~(2~(f)+~2~2~2(o))-~7~(o) e-r’r. 

(3% 

Equations (25) and (39) form a complete approxi- 
mate analytic solution of Problem I. 

When T,(t) is independent of time, so are g(t) and 
h(r). In this case, equation (39) reduces to 

5(&r) = ,/(2Nt+b’~~)-bt e-‘j’ (40 

where N is given by equation (27b). Note that the 
approximate expression (40) agrees with the exact one 
(29) when 7 approaches zero. 

For purposes of comparison, one may confine 
attention to the case of a constant surface temperature 
and define a proper set of dimensionless variables as 
follows : 

i=t d.? @r/d?) -- 
7’ ‘==Jb)’ dt- b (41) 

where b is taken as a reference speed, of the order of 
magnitude of the speed of the solidification front, the 
dimensionless equation of which is f = S(i). 

Then the system of equations (27a) and (26b) and 
expression (29) become dimensionless as 

= I, 5(0)=0, 9 = 1 (42) 

s(T) = J(2i). (43) 

It is of interest to consider the difference, D(r), 
between the hyperbolic and parabolic solidification 
depths for a fixed surface temperature. For concise- 
ness, one may write D(O za hyperbolic S(?)-para- 
bohc S(7). Figure 1 shows such a difference vs the 
dimensionless time i The behavior of the difference. is 

consistent with the predictions of the previous works 
(see, e.g. refs. [l-4, 7, 191). In fact, the hyperbolic 
solidification depth clearly differs significantly from 
the diffusive one for early values of i and decreases 
eventualfy to zero with increasing values of r/r, i.e. 
with decreasing r for a fixed value of the real time 
variable t. 

Remark 2. Assuming that the surface temperature 
is slow varying with time and the solution of Problem 
I is approximated by a cubic polynomial 

u(x,t) = a(~)~x-~)~b(f)(~-~)2+c(~)(x-~~3. (44) 

The determination of the coefficients a, b and c require 
three constraints on the temperature distribution 
I&C, t). These constraints are (15), (24) and 

U,,(O,f)“O. r>o (45) 

which is obtained by differentiating (15) and using the 
governing differential equation ( 14). 

Then the approximate temperature profile becomes 

T&r) = T,--A 
A’ 

i(x-s)+$x-s)*+ 1 
v 3-,/(9+6/i) 

n=S= s ’ Wb) 

The energy-integral equation (18a) reduces to 

s(7$+$44 Wa) 

where iU is given by 

M 
= 

4a 3+6Sre-J(9+ IfSte) 

13+6~ie-~(9+ 12Sre) 
(47b) 

and Ste is once again the Stefan number defined 
above. Equation (47a) has the same form as equation 

00 , 
0 I 2 3 4 5 6 7 6 9 IO II 12 I3 14 I6 I6 17 16 IS 20 

Dimartrionbss time, T=t/t 

FIG. 1. Difference of solidification depths vs time in dimensionless form for a fixed surface temperature. 
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(27a) and hence the singular perturbation solution of 
equation (47a) subject to equation (26b) maintains 
the same form as equation (40) with N replaced by M 
given above. 

5. SOLUTION OF PROBLEM II USING THE 

ENERGY-INTEGRAL METHOD 

As mentioned above, Problem II is concerned with 
the solidification of a pure liquid metal by withdrawal 
of heat at the surface boundary x = 0. All the liquid 
is once again at the solidification (or melting) tem- 
perature. Strictly speaking, Problem II is identical 
with Problem I except that the surface boundary con- 
dition (8) is now replaced by condition (12). In 
mathematical terms, the surface boundary condition 
at x = 0 may be expressed as 

&t(r) 
KT,(O, 4 = 7 dt - +qo(r) E Q(r), t > 0. 

Then Problem II written in the u-variable consists of 
equations (14), (16), (17) and 

-Ku, (0, t) = Q(r), t > 0. (48) 

In the present case, the energy-integral equation 
(18a) implies that 

s 

S(f) 

0 
u(x, t) dx+As(t) = % 

I 
‘[1 -e-“-C’“]Q(~) dl 

0 

(49) 

where (26b) has been used. 
Now, to solve equation (49) for s(t), a second- 

degree polynomial for u(x, t) is sought in the form 
of equation (19) where a(t) and b(t) are determined 
according to the two conditions (24) and (48). The 
resulting temperature profile has the form of equation 
(25a) where i. is given by 

i = 
1 -j(l+4/c) 

2s ’ 
p = p(t) = Q$$. (50) 

Combining such an expression for temperature and 
equation (49) yields 

?/ = ;[5+~+~~(1+4pol (5la) 

where 

9 = $$ [ 1 -e-“-‘l’T]Q(l) d<. (51b) 

The graphical representation of equation (51a) is 
given in Fig. 2. Note that the resulting curve and the 
curve for r -+ 0 have the same features. 

It is evident that the right-hand side of equation 
(51a) is a monotonically increasing function of p, so 
that for any given q. there is at most one p which 
can satisfy (51a). Hence in principle it is possible to 
uniquely invert equation (5la). With this in mind, one 
may express q in terms of powers of p, in the form 

I?=~(+~~,?--~c?+Z~J--:I(‘+--‘. (52) 

Then it is easily verified that this series is inverted into 

$ 5 51 195 
~=‘1-~+$?7-4~V1+ -51 ,)5-i_... 

(53) 

The temperature-time history on the surface bound- 
ary x = 0 is given parametrically by equation (5la) 
and 

T,-- T(0, f) 

A 
= :[-1+2/l+, (I+4p)l. (54) 

These two equations can be cross-plotted to determine 
(Tr- T(0, t))/A in terms of 4, and the result is shown 
in Fig. 3, which is the same curve obtained by 
Goodman [S] for the corresponding diffusive Stefan 
problem, that is, when t -+ 0. 

From equations (50) and (53). it follows that 

795 i 
+-Fq--+..’ 

I 
(55) 

where q z q(t) is given by equation (51 b). If 7 is 
allowed to approach zero, then equation (54) reduces 
to 

1 5 51 v-_,?‘+_-r’-_~~ 
2! 3! 4! 

1 (5&d) 

with v = v(f) defined by 

aQ(O ’ 
v(t) = A’K? s ” Q(t) dt. (56b) 

Equations (25a), (50) and (55) constitute a complete 
approximate solution of Problem II. If equation (55) 
is replaced by equation (56). one obtains the solution 
of the corresponding diffusive problem with 

(57) 

Remark 3. In approximating the solution of Prob- 
lem II by a cubic polynomial of the form of equation 
(44), three conditions are required to determine the 
coefficients of the polynomial. These conditions are 
(24), (48) and an additional equation. The extra equa- 
tion can be obtained by differentiating equation (48) 
with respect to time and using the governing differ- 
ential equation to deduce the constraint 

u,,,(O, t) = - 
zQ"(O+Q'(f) 

a --- 5 R(f). (58) 

In the event that Q(t) is so slow varying with time 
that R(t) vanishes, constraint (58) obviously reduces 
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30’ 

600 

Time, sp(t) 

FIG. 2. Thickness of solid vs time for an arbitrary heat flux at the surface boundary : equation (51). 

loo ?a0 300 400 500 600 

Time, r)( t 1 

FIG. 3. Temperature-time history on the surface boundary for an arbitrary heat flux at that boundary: 
equations (54) and (51). 

the cubic polynomial (44) to a quadratic expression. 
Otherwise, combining (24), (44), (48) and (58) results 
in 

T&t) = T,-A o(x-s)+&s)’ 
(60) 

f&--s)) 1 
Therefore, the analysis after equation (51 b) applies in 

(59a) the present case. However, it will not be duplicated 
here. 

where 

o= 
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METHODE INTEGRALE D’ENERGIE: APPLICATION AUX PROBLEMES 
HYPERBOLIQUES DE STEFAN MONOPHASIQUES 

Rksumk-On prisente une technique mathkmatique approchke qui utilise la nr&l~o& iurck/rrr/c~ d’thcvyc 
pour rksoudre le probltme de solidification plane d’un m&al liquide pur occupant un deli-espacc infini. 
En supposant un modile de relaxation variable dans le temps. pour Ie flux d’knergie. le champ thermique 
est dicrit par une Pquation hyperbolique aux dirivCes partielles qui est resolue pour des conditions 
d’iquilibre thermodynamique local et de compatibilit& thermique dynamique sur le d0placement de I’in- 
terface. De fait des expressions analytiques sont obtenues lorsque: (a) la temptrature de la surface est 
don&e. ou (b) le flux thermique parittal est don&. On fait des comparaisons entre ces expresslons et 
celles qui rCsultent des problemes paraboliques de Stefan: enfm, les solutions sont prksenties sous forme 

graphique. 

DIE ENERGIE-INTEGRAL-METHODE: ANWENDUNG AUF EINPHASlGE 
HYPERBOLISCHE STEFAN-PROBLEME 

Zusammenfassung-Es wird ein mathematisches Naherungsverfahren vorgestellt. das die Energlr-Integral- 
Methode benutzt. urn das ebene Problem der Erstarrung eines fliissigen Metalls zu liisen. welches einen 
halbunendlichen Raum einnimmt. Die Verwendung eines artlich-zeitlichen Relaxationsmodells fiir den 
Energiestrom fiihrt zu einer hyperbolischen Differentialgleichung fiir das Tempcraturfcld. welche bei 
geeigneten Bedingungen sowohl fiir lokales thermodynamischcs Gleichgewicht als such fiir thcrmisch- 
dynamische Vetriglichkeit an den sich verschiebenden Grenzflichen gel&t wird. Es werden analytische 
Ausdriicke hergeleitet. wenn (a) die Oberflichentemperatur oder (b) die WIrmestromdichte an der Ober- 
II&he vorgegeben ist. Diese Ausdriicke werden mit entsprechenden Ergebnissen fiir parabolischc Stefan- 

Probleme verglichen. AbschlieBend werden alle Ergebnisse grafisch dargestellt. 

METOfl MHTEI-PAJIA 3HEPl-MM: llPMMEHEHME K ODHOQA3HbIM 
I-MlIEPPOJIMSECKHM 3A&AYAM CTEcOAHA 

A-Puna-npencTaeneH MaTeMaTHwcrHti cnoco6 npH6nHrtemoro peu~e"Hx nnocKoii 3ana’IH saTaep- 
neeaHii* YHcroro mw~oro MeTanna,3anonwnoulero nonynp~aecrao,ocHosaHHbrir iia Hcnonb30na- 

HHH MeTona uwerpana weprw. B pe3ynaTaTe npHMeHetmn MonenH HecrauHoHapHofi penartcauee nnn 
noToKa 3HeprHW nonyveso rHnep60nHwcroe nw$@ep?HuHanbme ypamerine mn TeMnepaTypiioro 

"Onx,KOTOpOe pe",aeTCX B yCJlOBHIlX,COOTBeTcTBylolLtHX KaK JlOKaJlbHOMy TepMOLUiHaMbWCCKOhiy pan- 

~o~ecHm,TaK H Tennosoii nnnaumemol COBM~CTHOCTH np" cbteweiim hiex@aasnol rpatrmbl. Ilony- 

VeHbl aHanHTweCKHe BblpaxceHHa ~Cnyvaax 3anaHHn(a)TeMnepZiTypbI no~epx~oc~H HnH (6) TennOBOrO 
noToKa y rpaHwwoii nowpxsocrH.npoeeneH~cpasHeHHn namblx eblpalKeHm7 c COOTB~TCTB~H)~.~~~~H 

pe3ynbTaTaMH,nonyYeHHblMs nJIa napa60nHuecKofi 3anaYH CTe&Ha, a 3aTeM Bee peuIeHHR npencTaB- 

nenbl nrpa+isecKofi@~opbfe. 


